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ABSTRACT Variational quantum eigensolver (VQE) is a promising algorithm for near-term quantum ma-

chines. It can be used to estimate the ground state energy of a molecule by performing separate measurements

of O(N4) terms. This quartic scaling appears to be a significant obstacle to practical applications. However,

we note that it empirically reduces to O(N3) when we partition the terms into linear-sized commuting

families that can bemeasured simultaneously.We confirm these empirical observations by studying theMIN-

COMMUTING-PARTITION problem at the level of the fermionic Hamiltonian and its encoding into qubits.

Moreover, we provide a fast, precomputable procedure for creating linearly sized commuting partitions by

solving a round-robin scheduling problem via flow networks. In addition, we demonstrate how to construct

the quantum circuits necessary for simultaneous measurement, and we discuss the statistical implication of

simultaneousmeasurement. Our results are experimentally validated by a ground state estimation of deuteron

with low shot budget on a 20-qubit IBM machine.

INDEX TERMS Quantum computing, variational quantum eigensolver (VQE).

I. INTRODUCTION

The present Noisy Intermediate-Scale Quantum (NISQ) era

[1] is distinguished by the advent of quantum computers

comprising tens of qubits, with hundreds of qubits expected

in the next five years. Although several thousand logical

error-corrected qubits, backed by millions of device-level

physical qubits, are needed to realize the originally en-

visioned quantum applications, such as factoring [2] and

database search [3], a new generation of variational algo-

rithms has been recently introduced to match the constraints

of NISQ hardware.

Variational quantum eigensolver (VQE) [4] is one such

algorithm that is widely considered a top contender, if not the

top contender, for demonstrating useful quantum speedups.

VQE is used to approximate the lowest eigenvalue of a

matrix that is exponentially sized in the number of qubits.

This is a very generic eigenvalue problem with a wide class

of applications such asmolecular ground state estimation [4],

maximum three-satisfiability, market split, traveling sales-

person [5], and maximum cut [6]. In this article, we focus

on the molecular ground state estimation problem, which has

already been demonstrated experimentally, thoughwe under-

score that the full range of VQE applications is very broad.

VQE solves a similar problem as quantum phase estima-

tion (QPE) [7], [8], an older algorithm that requires large gate

counts and long qubit coherence times that are untenable for

near-term quantum computers. VQE mitigates these quan-

tum resource requirements by shifting some computational

burden to a classical coprocessor. As a result, VQE achieves

low gate count circuits and error resilience, but at the cost of
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requiring many iterations where each iteration measures one

of O(N4) terms.

This is a daunting scaling factor that poses practical limi-

tations. It was observed that this N4 scaling could be partly

mitigated by performing simultaneous measurement: when

two terms correspond to commuting observables, they can be

measured in a single state preparation. The article starts from

this observation, and we seek to exploit this idea to minimize

the total number of state preparations needed.

Our specific contributions include the following.

1) Efficient approximation algorithms for partitioning the

N4 terms into commuting families, i.e., approximating

the MIN-COMMUTING-PARTITION. This includes

an algorithm that partitions the terms into linearly sized

families that can be measured simultaneously such that

the total measurement cost is only O(N3).

2) A circuit synthesis tool for simultaneous measurement.

3) Statistical analysis of simultaneous measurement and

a procedure for guarding against harmful covariance

terms.

4) Validation of these techniques through benchmarks,

simulations, and experiments.

The rest of this article is structured as follows. Sec-

tion II presents relevant background material, and Section III

surveys prior work. Section IV analyzes the commutativ-

ity of the terms of interest (Pauli strings), and Section V

presents a technique for minimizing the number of state

preparations bymappingMIN-COMMUTING-PARTITION

to a MIN-CLIQUE-COVER instance that can be approxi-

mated. Sections VI and VII focus on a molecular Hamilto-

nian structure and demonstrate approximations of the MIN-

COMMUTING-PARTITION that execute in linear time or

generate linear-sized partitions, respectively. The latter ap-

proach has the effect of reducing the total VQEmeasurement

cost from O(N4) to O(N3) for molecular Hamiltonians.

Section VIII shows and analyzes the circuit synthesis

procedure that allows simultaneous measurements between

commuting Pauli strings. Section IX presents results for our

techniques on benchmark molecules, and Section X demon-

strates experimental validation. Section XI studies the under-

lying statistics and discusses a strategy for detecting and cor-

recting course if a partition is harmed by covariance terms.

We make concluding remarks and propose future work in

Section XII.

II. BACKGROUND

We assume an introductory-level knowledge of quantum

computing. We refer newer readers to one of many excellent

resources such as [9], [10], or [11].

A. QUANTUM MEASUREMENT

A standard procedure in quantum algorithms is to measure

a qubit. In hardware, the standard measurement that can be

performed is a measurement in the Z-basis, or computational

basis. Fig. 1 depicts such a measurement. The qubit’s state

FIGURE 1. Z-basis (computational basis) measurement of a qubit yields
|0〉 or |1〉 with a probability corresponding to the latitude of the qubit on
the Bloch sphere.

FIGURE 2. Measurement of the X or Y Pauli matrices requires us to first
apply a unitary rotation operation that rotates the X - or Y -axis to align
with the Z-axis. Subsequently, a standard Z-basis measurement yields
the outcome of the X or Y measurement.

is a point on the surface of the Bloch sphere—states with

northern latitudes are close to the |0〉 state and southern lat-

itudes are close to the |1〉 state. Measurement, or readout,

causes the qubit to collapse to either the |0〉 or |1〉 state, with
a probability dependent on the latitude.

At a more mathematical level, the deeper meaning of mea-

suring a qubit in the

Z =
(
1 0

0 −1

)

basis is to project the qubit’s state onto the eigenvectors of

the Z operator, which are |0〉 and |1〉. In the same sense, we

can measure other observables such as the other two Pauli

matrices

X =
(
0 1

1 0

)
Y =

(
0 −i
i 0

)
.

The eigenvectors of X are termed |+〉 and |−〉, and they

are antipodal points along the X-axis of the Bloch sphere.

Similarly, Y ’s eigenvectors, |i〉 and |−i〉, are antipodal along
the Y -axis. Since hardware cannot directly measure along

these axes, measurements of X (Y ) are performed by first

rotating the Bloch sphere with a unitary matrix so that the X

(Y )-axis becomes alignedwith the Z-axis. These rotations are

depicted in Fig. 2. Subsequently, a standard Z-basis measure-

ment can be performed, whose outcome can then be mapped

to an effective X (Y ) measurement.

The specific rotation that accomplishes the X-to-Z axis

change is the Ry(−π/2) transformation, which is typically

captured in quantum circuits by the similar H gate/matrix.

The Y -to-Z axis change is accomplished by the Rx(π/2)
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transformation, which is typically captured [12] in quantum

circuits by the HS† gates/matrix.

The same general principle applies toward measuring

observables across multiple qubits: measurement is accom-

plished by applying a quantum circuit that rotates the eigen-

vectors of the target observable onto the computational ba-

sis vectors. The unitary matrix for such a transformation is

simply the one that has the orthonormal eigenvectors of the

observable as column vectors. In this article, we will be inter-

ested in measuring Pauli strings, which are tensor products

of Pauli matrices across multiple qubits.

B. SIMULTANEOUS MEASUREMENT AND

COMMUTATIVITY

From the preceding discussion, we can see that two observ-

ables can be measured simultaneously if they share a com-

mon eigenbasis, i.e., they are simultaneously diagonalizable.

In this case, they can be measured simultaneously by apply-

ing the unitary transformation that rotates their shared eigen-

basis onto the computational basis. In the case of Hermitian

operators, such as the Pauli strings of interest to us, two

observables share an eigenbasis if and only if they commute

[13, Ch. 1], i.e., the order of their product is interchangeable.

Moreover, this relationship extends beyond simple pairs:

given a family of pairwise commuting observables, there

exists a shared eigenbasis that simultaneously diagonalizes

all of the observables (rather than it merely being a situation

in which each pair has a separate shared eigenbasis) [14,

Th. 1.3.21].

In this article, we will exploit this property to simultane-

ously measure multiple Pauli string observables with a single

state preparation and measurement circuit. Notice that this

problem is nontrivial because commutativity is not transitive

(and hence, not an equivalence class). Consequently, finding

optimal partitions of commuting families is a hard problem,

as we formalize later.

C. QUANTUM COMPUTATIONAL CHEMISTRY

Quantum computational chemistry has been a long targeted

problem on the classical computer. Due to the limits of clas-

sical computing resources, we are only able to perform ap-

proximate classical simulations. Examples include Hartree

Fock (O(N4) runtime [15]), density functional theory (O(N3)

runtime [16]), and coupled cluster single-double (O(N6)+
runtime [17] only considers single and double excitations).

The way to achieve chemical accuracy (1 kcal/mol) is

to use full configuration interactions (CIs), which consid-

ers all necessary orbitals. Classically, this will generally

require O(
(
M
N

)
) → exponential runtime [18]. On the other

hand, quantum computation is able to encode an exponential

amount of molecular information into a polynomial number

of qubits and thereby achieve full CI in polynomial time [19].

D. VARIATIONAL QUANTUM EIGENSOLVER (VQE)

As mentioned previously, VQE can be applied to a wide

class of problems that are solvable as minimum-eigenvalue

estimation [5], [6]. In this article, we focus on the application

that has received the most commercial and experimental in-

terest: estimating molecular ground state energy. Within the

molecular context, we use VQE to approximate the lowest

eigenvalue of a matrix, called the Hamiltonian, that captures

the molecule’s energy configuration. The lowest eigenvalue

is the ground state energy, which has important implications

in chemistry such as determining reaction rates [20] and

molecular geometry [21].

The Hamiltonian matrix for a molecule can be written in

the second quantized fermionic form as [22]

H =
N∑

p=1

N∑

q=1

hpqa
†
paq +

N∑

p=1

N∑

q=1

N∑

r=1

N∑

s=1

hpqrsa
†
pa

†
qaras (1)

where a† (a) is the fermionic raising (lowering) operator, and

N is the number of qubits and also the number of molecu-

lar basis wavefunctions considered. The hpq and hpqrs terms

can be computed classically via electron integral formulas

implemented by several software packages [23]–[25]. The

second sum in (1) indicates that the fermionic form of the

Hamiltonian has O(N4) terms [26], [27]. It can be translated

to qubit form by an encoding such as Jordan–Wigner [28],

parity [29], or Bravyi–Kitaev [30], as we will discuss further

in Section VI. The resulting qubit form will also have O(N4)

terms, where each term is a Pauli string.

It is difficult to directly and efficiently estimate 〈H〉, the
expected energy of the Hamiltonian under an input state vec-

tor. The approach of VQE is to estimate it indirectly but effi-

ciently, by employing linearity of expectation to decompose

〈H〉 into a sum ofO(N4) expectations of Pauli strings, which

can each be computed efficiently. In the standard and original

formulation of VQE, each of these Pauli strings is measured

via a separate state preparation [4].

At its core, VQE can be described as a guess-check-repeat

algorithm. Initially, the algorithm guesses the minimum en-

ergy eigenvector of the Hamiltonian H. Then, it checks the

actual energy for the guessed eigenvector by summing ex-

pected values over O(N4) directly measurable Pauli strings,

as previously described. Finally, it repeats by trying a new

guess for the minimum energy eigenvector, with the assis-

tance of a classical optimizer that guides the next guess based

on past results. The potential quantum speedup in VQE arises

from the fact that checking the energy on a classical com-

puter would requirematrixmultiplication of an exponentially

sized state vector; by contrast, the energy can be estimated

efficiently with a quantum computer by summing over the

expected values of the O(N4) Pauli strings.

Algorithm 1 presents the pseudocode for VQE, under the

standard “Naive” formulationwhere each Pauli string is mea-

sured separately. The resource complexity of VQE is clear

from this code: the inner for loops run O(N4/ǫ2) times and

each iteration requires a separate state preparation and mea-

surement. The outer while loop termination condition is

dependent on both the classical optimizer and the ansatz–we

discuss the latter next.

VOLUME 1, 2020 3102324
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E. UNITARY COUPLED CLUSTER SINGLE DOUBLE ANSATZ

Since the number of possible state vectors spans an expo-

nentially large and continuous Hilbert space, we seek to

restrict the family of candidate energy-minimizing states.

Such a family is called an ansatz, and the ansatz state |ψ (�θ )〉
is parameterized by a vector of independent parameters �θ .

Since VQE aims to run in polynomial time, the number of

parameters should be polynomial. While in this article is

applicable to any ansatz, we focus our attention to the unitary

coupled cluster single double (UCCSD) ansatz, which has

generally been the leading contender for molecular ground

state estimation. In addition to having a sound theoretical

backing (the coupled cluster approach is the gold standard

for computational chemistry [22], [31]), UCCSD is more

resilient to barren plateaus in the optimization landscape that

are experienced by hardware-oriented ansatzes [22], [32].

Recent work has also demonstrated the experimental supe-

riority of UCCSD to other ansatz types [33].

In terms of the number of qubits (which is also the number

of molecular basis wavefunctions) N, the total gate count of

UCCSD isO(N4) [34], [35], which can be parallelized in ex-

ecution to O(N3) circuit depth. As a concrete scaling exam-

ple, a recent 4-qubit, 2-electron UCCSD circuit construction

required circuit depth of 100 gates, spanning 150 total gates

[33]. This is already out of range of present machines—the

experimental work thus far has required many symmetry

reductions and approximations to implement UCCSD. The

number of parameters in UCCSD with respect to the number

of electrons and wavefunctions is O(N2η2), or O(N4) under

the standard assumption that these two terms are asymptoti-

cally related by a constant.

F. MUTUALLY UNBIASED BASES (MUB)

Finally, we give a brief overview of mutually unbiased bases

(MUB) [36], [37], a concept in quantum information theory

that is connected to our overarching question of maximizing

the information learned from a single measurement. In the

TABLE 1. MUB for Two Qubits

For the first three bases, the shared eigenbases have fully separable

eigenvectors. The last two bases have fully entangled eigenvectors.

case of qubits, MUBs describe a partitioning of the 4N − 1

N-qubit Pauli strings (identity is excluded) into commuting

families of maximal size. For example, Table 1 shows an

MUB for the two-qubit Pauli strings. Notice that each row

corresponds to a commuting family. Also note that not all

rows are created equal–in the first three rows, the shared

eigenbasis features separable eigenvectors. In the last two

rows, the shared eigenbasis has entanglement between the

two qubits.

It is known that for N qubits, there exists an MUB with

2N + 1 rows and 2N − 1 Pauli strings per row. This is optimal

in the sense that 2N − 1 is the maximum possible number

of distinct Pauli strings (excluding identity) within a com-

muting family. In Section V, this result will give us insight

into the bounds on our MIN-COMMUTING-PARTITION

approach.

III. PRIOR WORK

Some of the theoretical aspects of this article were concur-

rently and independently developed by two other research

groups. The four relevant papers, [38] from Waterloo and

[39]–[41] from Toronto all share with this article a high

level goal of reducing the cost of VQE by exploiting the

simultaneous measurability of commuting Pauli strings. In

particular, Jena et al. [38] mapped the measurement cost

reduction goal to a graph coloring problem. The research

works in [39]–[41], which respectively consider qubitwise

commutativity and general commutativity (GC) (defined in

Section IV), treat measurement cost reduction as a minimum

clique cover problem. The core ideas of these four papers can

be compared to Sections IV and V in this article.

This article is differentiated by a systems perspective that

gives explicit attention to the classical computation costs for

compilation and transpilation, as well as quantum overheads.

The graph algorithms discussed in [38]–[41] incur imprac-

tical classical costs that may undo potential speedups from

simultaneous measurement. We remedy this issue by intro-

ducing problem-aware techniques that operate on molecu-

lar Hamiltonian graphs in polynomial time and hence pre-

serve speedups, as discussed in Sections VI and VII. Also,

in Section VIII, we introduce a synthesis tool for simulta-

neous measurement circuits, in recognition of the fact that

simultaneous measurement does incur a quantum overhead

in additional gates and coherence requirements. To the best of

our knowledge, this is the first synthesis tool that constructs

simultaneous measurement circuits efficiently in both the

3102324 VOLUME 1, 2020
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TABLE 2. State Preparation and Measurement Costs From Prior VQE
Experiments That Performed Pauli String Partitioning on an Ad Hoc Basis

#Pauli strings indicates the number of measurement partitions that

would be needed naively. QWC expresses the number of qubit-

wise commuting partitions that were actually measured via ad hoc

inspection—we propose a more formal partitioning procedure in

Section V. GC foreshadows the general commuting partitions that

our techniques described in Sections IV-C, V, and VI achieve.

classical compilation cost and in the quantum circuit com-

plexity. Sections IX and X present benchmark results and ex-

perimental results validating that the classical and quantum

costs of simultaneous measurement are worthwhile. Addi-

tionally, we study the statistics of simultaneous measurement

in Section XI and demonstrate a constructive procedure to

guard against corruption from covariance terms.

Prior to 2019, strategies for simultaneous measurement in

VQE had not been studied formally, aside from the initial

suggestion of measurement partitioning in [42]. Most ex-

perimental implementations of VQE, for instance [34], [43],

[44], [45], did at least perform measurement partitioning on

an ad hoc basis, via inspection of the Hamiltonian terms.

Inspection is insufficient for larger molecules because the

underlying problem is NP-Hard, as described in Section V-A.

The improvement in these experimental works due to simul-

taneous measurement is indicated by the reduction from the

# Pauli Strings to QWC (qubitwise commutativity) column

in Table 2. The last column considers general commutation

(GC) partitioning, which we introduce and evaluate in this

article. Even for the small molecules that have been studied

experimentally thus far, GC achieves significant cost reduc-

tions over both Naive and QWC partitions.

In software implementations, both the Open-

Fermion [25] and Rigetti PyQuil [46] libraries

include augmented with functions for simulta-

neous measurement via qubitwise commutation:

group_into_tensor_product_basis_sets()

and group_experiments(), respectively. However,

these software implementations do not consider GC and

suffer from at least N8 scaling in runtime, which may undo

the potential speedup from simultaneous measurement.

An alternative perspective on the reduction of measure-

ment cost in VQE was introduced in [47], which takes the

approach of transforming molecular Hamiltonians to cre-

ate commutativity and reduce the number of qubits needed.

Another prior paper [48] operated in a related mathemati-

cal setting, using feedforward measurements to create QWC

(though we note that feedforward measurements are equiv-

alent to standard unitary transformations by the principle of

deferred measurement [11]).

Aside from state preparation and measurement costs, re-

cent work has focused on improving other elements of the

TABLE 3. Partitioning of
(N=8

4

)
= 70 a†

pa†
qaras Terms Into

(N−1=7
3

)
= 35

Subsets, With Disjoint Indices Between the Two Terms in Each Subset

Such a partitioning is guaranteed to exist for all N divisible by 4, per

Baranyai’s theorem [63].

VQE pipeline. In the classical stage, the research works in

[5], [42], and [49] described improvements to the classical

optimizer and those in [50] and [51] presented techniques for

optimized pulse-level compilation. At the quantum stage, the

research works in [35] and [52] proposed improvements to

ansatzes and those in [42] and [53] demonstrated procedures

for error mitigation. We note that all of these techniques ap-

ply to orthogonal stages of the VQE pipeline, and therefore,

can compose directly on top of this article.

IV. ANALYSIS OF COMMUTATIVITY

We analyze the commutativity of the terms present in Hamil-

tonian decompositions. Two terms A and B commute, if their

commutator is 0

[A,B] := AB− BA = 0 → AB = BA.

As mentioned in Section II-B, two commuting terms are

simultaneously diagonalizable by a shared eigenbasis.

In our case, the terms in an N-qubit Hamiltonian are

Pauli strings, which are N-fold tensor products of the Pauli

matrices

I =
(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
.

Pauli strings are also referred to in other literature as mem-

bers of the Pauli group, i.e., GN .

We seek to analyze when two Pauli strings commute.

While most of these results are known, they are usually dis-

cussed in the context of the stabilizer formalism and quantum

VOLUME 1, 2020 3102324
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error correction. We present the elements relevant to VQE

here, with foreshadowing of our key techniques.

A. SINGLE-QUBIT CASE

First, let us note the following commutation relations for

single-qubit Pauli matrices.

1) I commutes with everything else. Specifically, [I, I] =
[I,X] = [I,Y ] = [I,Z] = 0.

2) X , Y , and Z commute with themselves. [X,X] =
[Y,Y ] = [Z,Z] = 0.

3) The other pairs form a cyclic ordering. In particular,

[X,Y ] = 2iZ, [Y,Z] = 2iX , [Z,X] = 2iY . Flipping the

commutator bracket order negates the result.

B. QUBITWISE COMMUTATIVITY (QWC)

The simplest type of commutativity is qubitwise commu-

tativity (QWC). Two Pauli strings QWCommute if at each

index the corresponding two Pauli matrices commute. For

instance, {XX, IX,XI, II} is a QWC partition, because for

any pair of Pauli strings, both indices feature commuting

Pauli matrices.

As mentioned in Section III, QWC has been leveraged in

past experimental work for small molecules [34], [43]–[45]

by ad hoc inspection of the Hamiltonian terms. However,

Section V-A demonstrates that optimally partitioning Pauli

strings into QWC families is NP-hard, so an efficient approx-

imation algorithm is needed for larger Hamiltonians with

more Pauli strings.

QWC is also referred to in other work as tensor product

basis (TPB) [25], [43], [46], recognizing the fact that for a

family of QWC Pauli strings, the vectors in the simultaneous

eigenbasis can be expressed as a tensor product across each

qubit index, with no entanglement. As shown in Section VIII,

this makes simultaneous measurement very easy for QWC

partitions.

C. GENERAL COMMUTATIVITY (GC)

QWC is sufficient but not necessary for commutation be-

tween Pauli strings. For example, {XX,YY,ZZ} is a com-

muting family, even though none of the pairs are QWC—at

both indices, the Pauli matrices always fail to commute. The

most general rule for commutation of two Pauli strings is that

they must fail to commute at an even number of indices—2 in

the example of {XX,YY,ZZ}. We refer to this most general

form of commutativity as GC, and its proof is below. Note

that QWC is simply the subset of GC corresponding to the

case where the number of noncommuting indices is 0 (which

is even).

Theorem 1: Consider two N-qubit Pauli strings

A =
N⊗

j=1

A j B =
N⊗

j=1

B j

where A j,B j ∈ {I,X,Y,Z}. A and B commute (GC) iff A j
and B j fail to commute on an even number of indices.

FIGURE 3. This is the commutation graph (also known as a compatibility
graph [54]) for all 16 two-qubit Pauli strings. An edge appears when two
Pauli strings commute. The blue edges indicate Pauli strings that
commute under QWC (which is a subset of GC). The red edges commute
under GC-but-not-QWC.

Proof: For Pauli matrices that do not commute, AiBi =
−BiAi. Thus, we can write AB as

AB =
N⊗

j=1

A jB j =
N⊗

j=1

{
B jA j if [A j,B j] = 0

−B jA j if [A j,B j] �= 0
= (−1)kBA

where k is the number of indices where [A j,B j] �= 0. For AB

to equal BA, we require (−1)k = 1, which requires k to be

even. Thus, A and B commute iff A j and B j fail to commute

on an even number of indices. �

Fig. 3 depicts the commutation relationships between all

16 two-qubit Pauli strings. Edges are drawn between Pauli

strings that commute—a blue edge indicates that the pair is

QWC and a red edge indicates that the pair is GC-but-not-

QWC. The II identity term QWCommutes with every other

Pauli string.

V. MIN-CLIQUE-COVER ON HAMILTONIAN

We refer to our core problem of interest as MIN-

COMMUTING-PARTITION: given a set of Pauli strings

from a Hamiltonian, we seek to partition the strings into

commuting families such that the total number of partitions is

minimized. While the underlying structure of Pauli matrices

and their commutation relationships raises the possibility that

MIN-COMMUTING-PARTITION may be efficiently solv-

able, it turns out to be NP-hard, as we show in Section V-A.

Moreover, MIN-COMMUTING-PARTITION is hard even

whenwe only consider the restricted commutativity ofQWC.

Thus, the ad hoc QWC partitioning techniques from past

experimental work [34], [43]–[45] are likely to have limited

potential for larger molecules.

Instead of solving MIN-COMMUTING-PARTITION

exactly, we approximately solve it by mapping to a graph

problem as suggestively expressed by the graph repre-

sentation in Fig. 3. Observe that cliques (fully connected

subgraphs where each pair of Pauli strings commutes) are

relevant because all of the strings in a clique can be measured

3102324 VOLUME 1, 2020
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FIGURE 4. Top commutation graph shows both QWC (blue) and
GC-but-not-QWC commuting (red) relationships between the Pauli
string’s in LiH’s Hamiltonian. The vertex colors in the bottom two graphs
indicate MIN-CLIQUE-COVERs using only QWC edges (left) or using all
edges (right). The reduction in measurement partitions from Naive
(measuring each Pauli string separately) to QWC to GC is 14 → 5 → 2.

simultaneously. Therefore, we seek the MIN-CLIQUE-

COVER, i.e., the smallest possible set of cliques whose union

spans all vertices. As an example, Fig. 4 shows the com-

mutation graph for LiH’s 4-qubit Hamiltonian and its MIN-

CLIQUE-COVERs using QWC edges and using GC edges.

MIN-CLIQUE-COVER, in its decision version, is one of

the classic Karp NP-complete problems [55], so efficiently

finding the minimal possible clique cover for a general graph

is unlikely. Moreover, finding a guaranteed “good” clique

cover approximation is also NP-hard for general graphs [56].

However, molecular Hamiltonian graphs are highly struc-

tured owing both to features of the Pauli commutation graph

[57] and to patterns in the Pauli strings that arise in molecular

Hamiltonians (we explicitly address and exploit the latter in

Section VI). This suggests that MIN-CLIQUE-COVER ap-

proximation algorithms may yield reasonably good results.

Before discussing the approximation algorithms we used,

we discuss bounds on the MIN-CLIQUE-COVER and the

relationship to whether the partitions are QWC or GC.

A. NP-HARDNESS OF MIN-COMMUTING-PARTITION

We first show that MIN-COMMUTING-PARTITION is NP-

hard. Given a set of operators o1, o2, and, on, the MIN-

COMMUTING-PARTITION problem partitions the opera-

tor set into k subsets such that all operators in each subset

pairwise commute and k is minimized. The corresponding

decision problem is in NP as it is easy to verify pairwise

commutativity for each subset of operators. To show NP

completeness, it remains to show the problem is NP-hard.

FIGURE 5. Instance of MIN-CLIQUE-COVER (top) and
MIN-COMMUTING-PARTITION (bottom).

This can be done by reducing from MIN-CLIQUE-COVER.

Given a graph G = (V,E ) with n vertices that represents an

instance of MIN-CLIQUE-COVER, we produce an instance

of MIN-COMMUTING-PARTITION consisting of a set of

operators o1, o2, and on where each operator oi has n Paulis,

and the jth Pauli is Z if j = i, X if j > i and (vi, v j ) �∈ E,

and I otherwise. This is illustrated in Fig. 5. It is easy to see

that a commuting subset of operators corresponds to a clique,

which concludes the proof. Notice that the commutativity

relationships required in this reduction are only qubitwise

commutative, meaning that even the QWC-restricted MIN-

COMMUTING-PARTITION problem is NP-hard.

B. MIN-CLIQUE-COVER BOUNDS VIA MUBS

Note that 2N separate Pauli strings can be measured via a

single simultaneous measurement. For instance, consider the

2N set of Pauli strings of form (I or Z)⊗N . All such Pauli

strings can be simultaneouslymeasured by simplymeasuring

in the Z-basis on each qubit. This example is suggestive of the

power of simultaneous measurement. In the graph picture, it

means that cliques exist of size 2N , which means that simul-

taneous measurement can lead to an exponential reduction in

quantum cost relative to Naive separate measurements.

In the case of VQE, we will consider graphs that have

only a polynomially sized (O(N4)) number of Pauli strings. It

is still enlightening to consider the MIN-CLIQUE-COVER

on the N-qubit graph comprising all 4N − 1 possible Pauli

strings (in this analysis, we exclude I⊗N , which commutes

with everything else). Per the MUB formalism introduced

in Section II-F and as suggested in the previous paragraph,

a clique of Pauli strings can contain at most 2N − 1 ver-

tices. This suggests that at least 2N + 1 cliques are needed

to cover all 4N − 1 possible Pauli strings on N qubits. In

fact, this lower bound is exactly attainable—an MUB is ex-

actly such a covering of all N-qubit Pauli strings by disjoint
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cliques. Again, this illustrates the potential of simultaneous

measurement—a square root reduction is achieved in the

total number of state preparations and measurements needed

to cover all possible N-qubit Pauli strings.

Many of the partitions produced by MUBs have entan-

glement in the shared eigenbasis: for example, the bottom

two rows of the MUB in Table 1. This means that the MIN-

CLIQUE-COVER corresponding to an MUB requires GC

edges and not just QWC edges. Next, we further discuss the

advantage of GC over QWC.

C. QWC VERSUS GC

GC captures a much denser commutation graph than QWC

does, and therefore has more opportunities for larger cliques

and thereby smaller clique covers.

We first consider the commutation graph of QWC, over

all possible N-qubit Pauli strings; this graph has 4N vertices.

Given a Pauli string with I on k indices, it QWC commutes

with exactly 4k · 2N−k − 1 = 2N+k − 1 other Pauli strings:

on the “partner” string, the k indices are unrestricted and the

N − k indices can either match the original Pauli matrix or be

I (we subtract 1 to not count the original Pauli string). Since

there are
(
N
k

)
3N−k terms with I on exactly k indices, we see

that

|E| =
N∑

k=0

(
N
k

)
3N−k(2N+k − 1)

2
=

10N − 4N

2
.

This corresponds to an asymptotic graph density of

lim
N→∞

|E|
|V |(|V | − 1)/2

= lim
N→∞

(104 − 4N )/2

4N (4N − 1)/2

= lim
N→∞

(5/8)N = 0.

In other words, the QWC graph is extremely sparse. By

contrast, the GC graph is dense: consider two random Pauli

strings. The indicator variable denoting whether the two

strings commute on the ith index is a Bernoulli random vari-

able. Therefore, the GC commutation graph corresponds to

when the sum overN such independent variables is even, i.e.,

when a Binomial random variable is even. Asymptotically,

this occurs with 1
2
probability—thus the asymptotic graph

density for GC is 1
2
, much denser than for QWC.

Although GC leads to smaller MIN-CLIQUE-COVERs

than QWC, QWC does have cheaper simultaneous measure-

ment circuits, as we will see in Section VIII. However, the

cost of GC simultaneous measurement will still turn out to

be favorable, because circuit costs in VQE are dominated by

the ansatz preparation.

D. APPROXIMATION ALGORITHMS TESTED

In our benchmarking, we performed MIN-CLIQUE-

COVERs using the Boppana–Halldórsson algorithm

[58] included in the NetworkX Python package [59], as

well as the Bron–Kerbosch algorithm [60], which we

implemented ourselves. These heuristics approximate

a MAX-CLIQUE whose vertices are marked; we

then recurse on the residual unmarked graph, repeat-

ing until all vertices are marked. We also used the

group_into_tensor_product_basis_sets()

approximation implemented by OpenFermion [25]—this

approximation is a nongraph-based randomized algorithm

that only finds QWC partitions. Section IX presents results

across a range of molecules and Hamiltonian sizes.

While the benchmark results indicate promising perfor-

mance in terms of finding large partitions, it is critical to

also consider the classical computation cost of performing

the MIN-CLIQUE-COVER approximation. First, the Bron–

Kerbosch algorithm has a worst case exponential runtime.

Therefore, its optimality should be interpreted as a soft upper

bound on how well other standard approximation algorithms

can approximate a MIN-CLIQUE-COVER. The Boppana–

Halldórsson algorithm’s runtime is polynomial but is not well

studied. Our benchmarks and theoretical analysis indicate

roughly quadratic scaling in graph size. Some polynomial

benchmarks considered in the other concurrent work scale

as much as cubically in the graph size.

However, this poses a problem—the Hamiltonian graph

has N4 terms, so a quadratic or cubic runtime in the number

of vertices implies N8 or N12 scaling in classical precom-

putation time. Beyond simply implying impractical scaling

rates, these runtime ranges may exceed the quantum invo-

cation cost of VQE, in which case, we would be better off

just running VQE in the Naive fashion. In particular, recall

that the UCCSD ansatz has O(N3) circuit depth after par-

allelization and that naively, O(N4) state preparations are

needed per ansatz. The total quantum invocation cost of

VQE therefore scales as N7 multiplied by the number of

ansatz states explored, though we note that both the ansatz

exploration and the Naive O(N4) measurements could be

parallelized given multiple quantum machines. The number

of ansatz states explored is an open question that depends on

the classical optimizer, the ansatz type, and the variational

landscape. Nonetheless, we can make rough estimates by

noting that the VQE ansatz hasO(N4) parameters, and rough

theoretical results suggest anywhere from O(N4) iterations

under the default SciPy optimization settings [61] to O(N12)

under matrix inversion techniques. Further work is needed

to understand the exact cost of VQE, but there is a strong

case that standard graph approximation algorithms may have

higher asymptotic cost than simply executing VQE naively

without simultaneous measurement optimization. In the case

of many expensive MIN-CLIQUE-COVER approximation

algorithms, it seems likely that it would be better to simply

skip the partitioning step and just measure the Pauli strings

naively.

In the next two sections, we remedy this concern by pre-

senting MIN-COMMUTING-PARTITION approximations

that exploit our knowledge of the structure of molecular

Hamiltonians and their encodings into qubits. The resulting

approximation in Section VI algorithm runs in O(N4) time

(linear in the number of Pauli strings, i.e., the graph size),
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which is safely below the quantum invocation cost of VQE.

The algorithm in Section VII also runs in polynomial time,

but guarantees to find linearly sized commuting families.

VI. LINEAR-TIME PARTITIONING

As discussed in the previous section, standard MIN-

CLIQUE-COVER approximations may be unsuitable since

the classical cost of partitioning can exceed the quantum

cost from naively running VQE. This motivates us to inspect

features of molecular Hamiltonians and develop a new par-

titioning strategy accordingly. At a high level, our new strat-

egy is context-aware and attacks the MIN-COMMUTING-

PARTITION problem at a different abstraction level, namely

the encoding stage from fermionic Hamiltonian to qubit

Hamiltonian. By contrast, the previous approximations are

unaware of molecular properties.

For convenience, we repeat (1) for the molecular Hamil-

tonians

H =
N∑

p

N∑

q

hpqa
†
paq +

N∑

p

N∑

q

N∑

r

N∑

s

hpqrsa
†
pa

†
qaras

where a† and a denote raising and lowering operators that act

on fermionic modes.

The N4 scaling of the number of terms in the Hamil-

tonian is clear from the second summation. In particular,

the asymptotically dominant terms are of form a†pa
†
qaras

with p �= q �= r �= s. These O(N4) terms are known as the

double excitation operators [62]. At the scale of smaller

molecules, theO(N) terms of form a†pap and theO(N
2) terms

of form a†pa
†
qapaq are frequent. These are termed the number

and number-excitation operators, respectively. We will treat

both the asymptotically dominant terms and the frequent-for-

small-molecules terms in this section.

The commutation relationships of fermions are different

from the commutation relationships of qubits. Thus, an en-

coding step is needed to convert the fermionic Hamiltonian

into a qubit Hamiltonian. We consider the most common

[22] such encodings: Jordan–Wigner [28], parity [29], and

Bravyi–Kitaev [30].

A. JORDAN–WIGNER

Under the Jordan–Wigner encoding, we make the fermion-

to-qubit transformations

ap →
Xp + iYp

2
Zp−1, . . . ,Z0, a†p →

Xp − iYp

2
Zp−1, . . . ,Z0

with I on every other index.

1) DOUBLE EXCITATION OPERATORS

For the asymptotically dominant O(N4) terms of form

a†pa
†
qaras (WLOG, p > q > r > s), we end up with the 16

Pauli strings matching the regular expression

(Xp|Yp)Zp−1, . . . ,Zq+1(Xq|Yq)(Xr|Yr )Zr−1, . . . ,Zs+1(Xs|Ys).

FIGURE 6. 16 relevant Pauli strings in the Jordan–Wigner encoding of

a†
pa†

qaras have a MIN-CLIQUE-COVER of size 2.

Thus, we see that the Jordan–Wigner transformation turns

each of the N4 fermionic terms into a sum over 16 Pauli

strings. Moreover, these 16 Pauli strings are disjoint from the

ones generated by a a†
p′a

†
q′ar′as′ term. Consider the commu-

tation graph of the 16 Pauli strings. All indices except for

p, q, r, and s immediately commute, so the commutativity

graph only needs to consider the p, q, r, and s indices. Fig. 6

depicts the commutation graph, which has a MIN-CLIQUE-

COVER of 2. Thus, this yields a strategy for reducing the

number ofmeasurement partitions by 8×: we collect all Pauli

strings from fermionic terms of form a†pa
†
qaras (and from the

4! permutations of the indices) and measure them using 2 GC

partitions instead of 16 Naive partitions.

For molecular Hamiltonians, we generally expect to have

hpqrs = hsrqp, because of the nature of these calculations via

integrals and the fact that electrons are indistinguishable. In

this case, only eight terms arise (as noted in another context

by Whitfield et al. [62]), specifically the green 8-clique in

Fig. 6. Thus again, we can achieve an 8× reduction.

2) NUMBER AND NUMBER-EXCITATION OPERATORS

While the eightfold reduction in the partitions of the O(N4)

pqrs terms is the asymptotic bottleneck, we also note a useful

reduction for the smaller terms that are significant for smaller

molecules.

For the O(N) number operators of form a†pap, multi-

plying out the Jordan–Wigner encoding yields the Pauli

string Zp. For the O(N2) number-excitation operators of

form a†pa
†
qapaq, the Jordan–Wigner encoding yields the Pauli

string ZpZq.

Observe that all of these Pauli strings commute and there-

fore can be simultaneously measured. Moreover, they are

QWC, so the simultaneous measurements are cheap, as we

will see in Section VIII. While this result may appear obvi-

ous from inspection of small molecular Hamiltonians, which

have many Pauli strings of form I, . . . , IZI, . . . , I, we un-

derscore that it is not obvious to a context-unaware MIN-

CLIQUE-COVER approximation.
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FIGURE 7. Similar to the Jordan–Wigner case, the 16 relevant Pauli

strings in the parity encoding of a†
pa†

qaras have a MIN-CLIQUE-COVER of
size 2.

B. PARITY ENCODING

For the parity encoding, we make the transformations

ap = XN−1, . . . ,Xp+1

XpZp−1 + iYpIp−1

2

a†p = XN−1, . . . ,Xp+1

XpZp−1 − iYpIp−1

2
.

1) DOUBLE EXCITATION OPERATORS

WLOG, suppose p− 1 > q, q− 1 > r, r − 1 > s. Multiply-

ing out a†pa
†
qaras, we see that the parity encoding creates

Pauli strings matching the regular expression

(XpZp−1|YpIp−1)Xp−2 · · ·Xq+1(XqZq−1|YqIq−1) · · ·

· · · (XrZr−1|YrIr−1)Xr−2 · · ·Xs+1(XsZs−1|YsIs−1).

Only indices p, p− 1, q, q− 1, r, r − 1, s, and s− 1 are

relevant for commutativity. Once again expanding the result-

ing 16 Pauli strings, we see that the commutation graph has

a MIN-CLIQUE-COVER of size 2, as depicted in Fig. 7.

Thus, we can again achieve an 8× reduction in the number of

partitions by performing simultaneous measurement across

these indices. However, note that the simultaneous measure-

ment circuit now involves eight indices, so it will be more

expensive than the simultaneous measurement circuit for the

Jordan–Wigner encoding.

2) NUMBER AND NUMBER-EXCITATION OPERATORS

We also again consider the O(N) and O(N2) operators that

are frequent in smaller molecules. The parity encoding on

the number and number-excitation operators gives rise to

Pauli strings of form ZpZp−1 and ZpZp−1ZqZq−1, respec-

tively. Again, we see that for small molecules, the parity

encoding creates a large set of QWC Pauli strings.

C. BRAVYI–KITAEV

The Bravyi–Kitaev coding is asymptotically favorable for

Hamiltonian simulation because it requires asymptotically

fewer non-I operators per Pauli string by only selecting

FIGURE 8. Pictorial representation of the Jordan–Wigner encoding of

a†
pa†

qaras. Repeating Zs span the blue rectangles between p and q and
between r and s. The other three ranges have repeating Is. At indices p,
q, r, and s, which are denoted by the black vertical bars between the
blue and white rectangles, we can have either X or Y . Thus, there are
24 = 16 Pauli strings involved in the Jordan–Wigner encoding.

a subset of indices to perform partial sums needed in the

fermion-to-qubit encoding. As a result, every ap or a
†
j
term

involves a subset of indices (> p) that carry the X update, and

a subset of the indices (< j) that require the phase correction.

This complicates the commutation structure of a†pa
†
qaras and

there is not an immediately obvious clique cover strategy–we

identify this as an open question.

VII. O(N3) MEASUREMENT COST VIA O(N)-SIZED

PARTITIONS

We now present an algorithm that runs in O(N5 logN time

and produces O(N)-sized commuting families. This reduces

the measurement cost of VQE on molecular Hamiltonians

from O(N4) to O(N3).

A. COMMUTATIVITY OF INDEX-DISJOINT TERMS

We focus on the O(N4) terms with p �= q �= r �= s in the

second sum of (1), because these terms are asymptotically

dominant; the number of other terms is only O(N3). Without

loss of generality, let us suppose that p > q > r > s, and

likewise i > j > k > l. We denote the set of Pauli strings in

the Jordan–Wigner encoding of a†pa
†
qaras as {a†pa†qaras}JW.

Our core observation is that if two a†a†aa terms have

disjoint indices, then the terms in their qubit encodings com-

mute. In particular, consider the following theorem.

Theorem 2: If {p, q, r, s} ∩ {i, j, k, l} = ∅, then

[{a†pa†qaras}JW, {a†
i
a†
j
akal}JW] = 0

where the commutator is taken to apply between all pairs of

elements between the two sets.

Theorem 2 can be verified by inspecting the form of the

Pauli string terms in {a†a†aa}JW. Under the Jordan–Wigner

encoding [28], we perform the transformations

ap →
Xp + iYp

2
Zp−1 · · · Z0, a†p →

Xp − iYp

2
Zp−1 · · ·Z0.

Carrying out the transformation for a†pa
†
qaras yields the 16

Pauli strings matching the regular expression

(Xp|Yp)Zp:q(Xq|Yq)(Xr|Yr )Zr:s(Xs|Ys)

where Zp:q denotes Z on each index between p and q, ex-

clusive of endpoints. Fig. 8 shows this pattern as a pictorial

representation: the repeating Zs are blue rectangles and the

{p, q, r, s} indices are the black vertical bars demarcating the

blue and white rectangles.
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FIGURE 9. Pictorial representation of the commutation on each index
between two {a†a†aa}JW rectangles. All indices commute except possibly
the eight indices with black bars—these indices anticommute when the
black bar (X or Y ) is vertically aligned with a blue rectangle Z. In this
example, there are an even (4) number of anticommuting terms, so the
two patterns commute.

To evaluate the commutativity between a term in

{a†pa†qaras}JW and a term in {a†
i
a†
j
akal}JW, we simply need to

count the number of indices that anticommute. If the num-

ber of anticommuting indices is even, then the two Pauli

strings commute. For all indices other than p, q, r, s, i, j, k, l,

the Pauli matrices at the indices commute, because [I, I] =
[I,Z] = [Z, I] = [Z,Z] = 0. On the remaining eight indices,

the commutation depends on whether (X |Y ) is matched to I

(commutes) or Z (anticommutes). Fig. 9 depicts this: when

one of the black bars (X |Y ) is vertically aligned with a blue

rectangle (Z), the index does not commute, as marked by the

red cross. When the black bar is vertically aligned with a

white rectangle (I), the index commutes.

The commutativity between {a†pa†qaras}JW and

{a†
i
a†
j
akal}JW terms can be verified by considering all

possible interleaved orderings of the eight indices, subject to

the constraint that p > q > r > s and i > j > k > l. There

are
(
8
4

)
= 70 such cases that can be explicitly checked (or 35

cases, accounting for symmetry) to prove Theorem 2. Fig. 10

demonstrates four representative cases, which provide useful

intuition for the general case. In particular, when sliding one

of the {p, q, r, s} indices while keeping {i, j, k, l} fixed, the
parity of the number of anticommuting indices is invariant.

Thus, this parity is always even, and two {a†pa†qaras}JW and

{a†
i
a
†
j
akal}JW terms with disjoint indices always commute,

as claimed in Theorem 2.

B. EXISTENCE OF LINEARLY SIZED PARTITIONS

Consider the set of Pauli strings contained in

{a†
N
a
†
N−1

aN−2aN−3}JW ∪ {a†
8
a
†
7
a6a5}JW ∪ · · · ∪

× {a†
4
a†
3
a2a1}JW

for N divisible by 4. There are 16N
4

= 4N ∈ O(N) Pauli

strings in this set. However, since the indices are disjoint,

Pauli strings from each of the N
4
subsets can be measured

simultaneously by Theorem 2. In particular, the Pauli strings

can be partitioned into 16 ∈ O(1) measurement families.

In fact, they can even be partitioned into just two mea-

surement families by noting that the MIN-COMMUTING-

PARTITION within each {a†pa†qaras}JW term is 2, as de-

scribed previously in Section VI.

A natural question is whether all
(
N
4

)
p > q > r > s terms

in (1) can be partitioned in such a fashion—if so, then this

constitutes a partitioning of the O(N4) terms into
(
N
4

)
/N
4

=

FIGURE 10. Four representative examples illustrating why {a†
pa†

qaras}JW

and {a†

i
a†

j
akal }JW terms always commute (have an even number of

anticommuting indices) when {p, q, r, s} ∩ {i, j, k, l} = ∅. At the top, no
black bars align with blue rectangles, so there are 0 anticommuting
indices. Below, r > i > s > j, so there are two anticommuting indices: i
and s. Below that, observe that sliding the i endpoint into the interval
between q and r does not change the parity of the number of
anticommuting indices. The bottom example shows a case with the
maximal number of anticommuting indices, i.e., 6.

(
N−1
3

)
∈ O(N3) commuting families. Intuitively, this is the

same problem as trying to schedule a round-robin tournament

of N players with four players-per-game into
(
N−1
3

)
rounds.

We can think of each index as a player, and four-player games

can be scheduled simultaneously if they do not share players.

Equivalently, these problems can be bijected to a graph the-

ory problem: does the four-uniform complete hypergraph on

N vertices admit a 1-factorization?

The answer to all of these questions is affirmative, per

Baranyai’s theorem [63]. In our case, it means that for N

divisible by 4, the
(
N
4

)
∈ O(N4) terms can be partitioned

into
(
N−1
3

)
∈ O(N3) sets, such that the N

4
terms within each

set have disjoint indices. Table 1 demonstrates such a parti-

tioning for N = 8 qubits. Each of the
(
8−1
3

)
= 35 rows has

two fermionic terms with disjoint indices—thus, their corre-

sponding Jordan–Wigner qubit encodings can be measured

simultaneously.

C. CONSTRUCTION OF LINEARLY SIZED PARTITIONS

Prior literature refers to Baranyai’s original proof as either

being nonconstructive [64], [65] or providing an exponential-

time construction [66] (prior literature varies in what exactly

is considered Baranyai’s proof). In order for Baranyai’s proof

to be useful to us, we need a fast polynomial-time algo-

rithm for partitioning the
(
N
4

)
subsets of N into

(
N−1
3

)
groups,

each containingN/4 disjoint subsets. Fortunately, due to later

work by Brouwer and Schrijver [67], a proof was provided

that leads to an efficient construction [68]. The proof is based

on maximum flows in network flow graphs.
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We refer readers to [69] for a lucid explanation and to

[70] for an implementation in code. This implementation

was used to generate Table 3. The pseudocode is given in

Algorithm 2. An outer loop is called N times, and each it-

eration solves for maximum flow on a network with O(N3)

vertices and O(N4) directed edges. Since the maximum flow

in the proof construction has a value of O(N3), solving for

it with the Ford–Fulkerson algorithm would incur a cost of

O(N7) per loop iteration [71]. However, due to work on flow

rounding [72]–[75], this runtime is reduced to O(N4 logN).

This is because for each flow network, a fractional solu-

tion is known that can be rounded to an integral solution

faster than computing an integral solution from scratch.

Thus, the total runtime of the Baranyai constructive proof is

O(N5 logN).

A useful aspect of the Baranyai-based approach to molec-

ular Hamiltonian partitioning is that it depends only on N

and not on the hpq and hpqrs coefficients in (1). In this sense,

it is precomputable—for instance, the N = 8 partitioning in

Table 1 will apply to all 8-qubit Hamiltonians. By contrast,

MIN-COMMUTING-PARTITION techniques in prior work

operate on the specific molecular Hamiltonians of interest.

Thus, the partitionings are not precomputable and the clas-

sical cost of partitioning must be accounted for in time to

solution.

In summary, we have demonstrated that Jordan–Wigner

encoded molecular Hamiltonians can be partitioned into

O(N3) commuting families, each containing O(N) Pauli

strings. Our proof stems from Baranyai’s theorem, which

has a constructive form that efficiently yields partitionings,

per Algorithm 2. Since commuting families can be

measured simultaneously, this constitutes a reduction in the

measurement cost of VQE fromO(N4) naively toO(N3) with

these partitions. Beyond VQE, this technique may be useful

in other quantum computational chemistry applications. For

example, the simulation of Hamiltonian dynamics could be

improved by partitioning into commuting families [76].

VIII. CIRCUITS FOR SIMULTANEOUS MEASUREMENT

Once an approximateMIN-COMMUTING-PARTITION so-

lution has been generated, a natural question arises of how

to actually perform the necessary simultaneous measurement

for each commuting partition. In the case of Naive partitions

where each Pauli string is measured separately, the measure-

ment circuit is trivial. In particular, recall from Section II

that we simply perform the H and HS† operations on the

indices with X orY , respectively, and then we measure every

qubit in the Z-basis. Thus, we need justO(N) fully paralleliz-

able single-qubit gates; more specifically, we require k ≤ N

single-qubit gates, where k is the number of indices in the

Pauli string that equal X or Y .

Simultaneous measurement is also similarly straightfor-

ward in the case of QWC partitions. Each index of a QWC

partition is characterized by a measurement basis. For exam-

ple, consider the task of simultaneously measuring the two

QWC Pauli strings XIYIZI and IXIY IZ. We simply apply H

to the left two qubits and HS† to the right two qubits. The

resulting qubits can all be measured in the standard Z-basis,

and the corresponding outcomes indicate the X , X , Y , Y , Z,

and Z outcomes as desired. In terms of circuit cost, QWC

measurement is essentially identical to Naive measurement:

O(N) single-qubit gates are required, and the gates are fully

parallelizable to constant depth.

While Naive and QWC partition measurements are

straightforward, GC partition measurements are nontrivial.

We now introduce a circuit synthesis procedure enabling

these measurements, and we analyze both the quantum and

classical costs of this procedure. To the best of our knowl-

edge, this is the first work explicitly demonstrating how to

perform simultaneous measurement in the general case of

GC Pauli strings. We implemented our circuit synthesis tool

as a Python library [77] and validated it across a wide range

of molecular Hamiltonians.

A. BACKGROUND

As discussed in Section II, performing a simultaneous mea-

surement amounts to applying a unitary transformation in

which the columns of the unitary matrix are the simultaneous

eigenvectors of the commuting Pauli strings in the partition.

After applying such a transformation and then performing

standard Z-basis measurements, the outcomes are mapped

directly to measurements of the Pauli strings of interest. One

approach to synthesize a simultaneous measurement circuit

would be to explicitly compute the matrix of simultaneous

eigenvectors and then apply one of many possible unitary

decomposition techniques [78]–[83] to this matrix. However,

this approach is not sufficient for two reasons. First, in gen-

eral, decomposition techniques tradeoff between requiring

intractable quantum circuit depth, requiring intractable clas-

sical compilation time, and yielding only approximations to

the desired transformation. Second, and most importantly,

these techniques require us to compute the simultaneous

eigenvectors and input them to the decomposer. In general,

the simultaneous eigenvectors resulting fromGC can be fully
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FIGURE 11. Bell basis measurement circuit that simultaneously
measures XX , YY , and ZZ on the |ψ〉 state. After application of these two
gates, the measurements of the top and bottom qubits correspond to
outcomes for XX and ZZ, respectively. The YY outcome is obtained from
YY = −(XX )(ZZ ).

entangled across all N indices, and they are represented by a

2N-sized column vector. The corresponding unitary matrix

would be doubly exponentially sized in N, erasing any po-

tential quantum advantage.

With this in mind, it is clear that any decomposition tech-

niquemust avoid explicitly computing eigenvectors andwrit-

ing out exponentially sized unitary matrices. Fortunately,

the stabilizer formalism—typically applied to quantum error

correction—provides us such a mechanism. Before proceed-

ing, we note that this article is built upon the language of

stabilizers introduced in [84] and expanded upon in [85].

While these two papers were applied to error correction and

quantum simulation, the core techniques also apply to our

use case. Also, Seyfarth and Ranade [86] and [87] leveraged

these stabilizer techniques to perform MUB measurements.

Our circuit constructions are drawn from these two papers as

well as [88], but stem from a different context and end goal.

B. EXAMPLE: {XX,YY, ZZ}

We begin with a well-known example. Consider the task of

trying to simultaneously measure XX,YY, and ZZ, a GC (but

not QWC) partition. The simultaneous eigenvectors of these

Pauli strings are known as the four Bell states

|�+〉 =
|00〉 + |11〉

√
2

|�−〉 =
|00〉 − |11〉

√
2

|�+〉 =
|01〉 + |10〉

√
2

|�−〉 =
|01〉 − |10〉

√
2

.

These eigenvectors are linearly independent and span all

possible 2-qubit states—hence, they are a basis. Un-

like the vectors in the standard computational basis of

{|00〉, |01〉, |10〉, |11〉}, the eigenvectors in the Bell basis fea-
ture entanglement between the two qubits. As a result, mea-

surement in the Bell basis requires interaction between the

two qubits, unlike the Naive and QWC measurements de-

scribed previously. The quantum circuit in Fig. 11 is a well-

known circuit that performs Bell basis measurement, i.e.,

simultaneous measurement of XX , YY , and ZZ.

To understand why this circuit measures XX and ZZ

(and also YY = −(XX )(ZZ)), we observe that our ultimate

goal is to transform a target measurement of [XX,ZZ] into

[ZI, IZ]—the latter captures the outcomes we actually mea-

sure directly via standard Z-basis measurement. An impor-

tant background result is that after applying some unitary

operationU , a target measurement ofM on the original state

has become equivalent to a measurement ofUMU† [11], [84]

on the new state. This is known as unitary conjugation.

In the Bell basis measurement circuit, we first applyU =
CNOT. By computing UMU†, we can see that target mea-

surements of [XX,ZZ] are transformed under conjugation to

measurements of

[XX,ZZ]
UMU†

−−−−−→
U=CNOT

[UXXU†,UZZU†] = [XI, IZ].

Finally, after applying the Hadamard gate on the top qubit,

the measurements are transformed to

[XI, IZ]
UMU†

−−−−→
U=H⊗I

[UXIU†,UIZU†] = [ZI, IZ].

Thus, this CNOT, H ⊗ I gate sequence performs the desired

transformation of rotating a measurement of [XX,ZZ] into

the computational basis, i.e., [ZI, IZ]. The ordering of the

elements is important and indicates that measurement of the

top qubit (ZI) corresponds to the XX outcome and measure-

ment of the bottom qubit (IZ) corresponds to the ZZ out-

come. As mentioned previously, YY follows as −(XX )(ZZ).

C. STABILIZER MATRICES

In order to consider the general case, we now switch to

the formalism of stabilizer matrices. Our notation and ter-

minology is similar to previous work [84]–[88], with some

deviations for clarity. Within the stabilizer formalism, ev-

ery N-qubit Pauli string maps to a 2N-entry column vector.

The top N entries indicate whether each corresponding index

“contains” a Z. The bottom N entries correspond to Xs. The

Y Pauli matrix corresponds to having a 1 in both the Z and

X entries, since Y = iZX . The stabilizer matrix for a list

of Pauli strings is simply the concatenation of the column

vectors. As an instructive example, the stabilizer matrix for

[XXX,YYY,ZZZ,XYZ] is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0

0 1 1 1

0 1 1 1

1 1 0 1

1 1 0 1

1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For convenience and clarity, we will refer to the top N

rows as the Z-matrix and the bottom N rows as the X-matrix.

Recall that our goal is to transform a target set of Pauli strings

for simultaneous measurement into the computational ba-

sis measurements, [ZII · · · I, IZI · · · I, . . . , III · · ·Z]. We see

that the stabilizer matrix for this computational basis simply

has an N × N identity as the Z-matrix and all zeroes in the

X-matrix.

We now seek a procedure to transform the target stabilizer

matrix into this computational basis stabilizer matrix. To see

how to accomplish such a transformation, it is useful to know

unitary conjugation relationships for a basic gate set. Tables 4
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TABLE 4. Result of Conjugation of Z and X by Single-Qubit Gates
U = H or S

TABLE 5. Result of Conjugation of ZI, IZ, XI, or IX by Two-Qubit Gates
U = CNOT, CZ, or SWAP

Note that H can be thought of as a “not gate” between X and Z. The S

(phase) gate does not affect Z, but does transform X into Y .

and 5 list the unitary conjugations of important Pauli strings

for one- and two-qubit unitary gates, respectively.

Based on these tables, we can interpret the action of each

of these unitaries on a stabilizer matrix. These rules can be

verified directly from the tables and are also explained in [85]

and [87].

1) H on the ith qubit swaps the ith and i+ Nth rows of the

stabilizer matrix (i.e., swaps between corresponding

rows of the Z and X matrices). It is helpful to think

of H as a “not gate” that flips Z and X measurements.

2) S on the ith qubit sets the (i, i) diagonal entry in the

Z-matrix to 0.

3) CNOT controlled on the ith qubit and targeted on the

jth qubit adds the jth row to the ith row and adds

the i+ Nth row to the j + Nth row. All additions are

performed modulo 2.

4) CZ between the ith and jth qubits sets the (i, j) and

( j, i) symmetric off-diagonal entries of the Z-matrix

to 0.

5) SWAP between the ith and jth qubits swaps the ith and

jth rows of both the Z and X matrices. This can be seen

from the fact that SWAP = (CNOT)(NOTC)(CNOT)

and two rows can be swapped with three alternating

binary additions.

D. CIRCUIT SYNTHESIS PROCEDURE

We now have the tools we need for circuit synthesis, which

amounts to transforming the stabilizer matrix for a com-

muting family of Pauli strings into the computational basis

stabilizer matrix (which has identity for the Z-matrix and

zeros for the X-matrix). For simplicity, we describe the pro-

cedure for the case when the partition ofN-qubit Pauli strings

is complete and contains N linearly independent elements.

This is the hardest case—if the partition is incomplete, the

measurement procedure is similar but has more slack.

The circuit synthesis procedure is described in Al-

gorithm 3. To develop its intuition, we demonstrate its

application to the problem of simultaneously measuring

[IYX,ZZZ,XIX,ZXY ], which is a GC (but not QWC) fam-

ily. We initialize the algorithm by setting the stabilizer ma-

trix to a basis of this partition. Note that the fourth term

is linearly dependent on the first three, so we exclude it to

yield such a basis; in general, we use Gaussian elimination

to perform this distillation of the Pauli strings into a basis.

The stabilizer matrix for this resulting list of Pauli strings,

i.e., [IYX,ZZZ,XIX], is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0

1 1 0

0 1 0

0 0 1

1 0 0

1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The first step of the simultaneousmeasurement circuit syn-

thesis is to applyH gates as needed to transform theX-matrix

to have full rank (it is currently only rank 2). Such a trans-

formation is always possible and can be found efficiently by

Gaussian elimination [85, Lemma 6]. In this case, applying

H to the first qubit swaps the first and fourth rows of the

stabilizer matrix, yielding an X-matrix of full rank 3

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1

1 1 0

0 1 0

0 1 0

1 0 0

1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now that the X-matrix is of full rank, we can apply stan-

dard Gaussian elimination to row reduce it into the identity

matrix. The CNOT and SWAP gates give us the elementary

row operations needed: add one row to another and swap

rows. In this example, the X-matrix can be row reduced to the

identity by first adding its second row to the third row, and

then swapping the first and second rows. Breaking this down,

we first observe the effect of the CNOT on the stabilizer
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matrix

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1

1 0 0

0 1 0

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Finally, the SWAP completes the row reduction, leaving

the X-matrix as the following identity:

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 0 1

0 1 0

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Notice that the CNOT and SWAP also affected the Z-

matrix, which is now a symmetric matrix; this is guaranteed

to occur [87]. Now, our desired transformation is almost

complete. The on-diagonal 1 is erased with S on the first

qubit, and the two off-diagonal 1s are erased with a CZ

between the second and third qubits. These two operations

have no effect on the X-matrix, as shown in the following:

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Finally, we apply an H to each qubit, which swaps the Z

and X matrices, leaving us in the computational basis stabi-

lizer matrix, as desired

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The full circuit and resulting transformation is shown as

follows:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0

1 1 0

0 1 0

0 0 1

1 0 0

1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

→ →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

E. CIRCUIT COMPLEXITY

The efficiency of Algorithm 3 and the overarching stabilizer

formalism stems from the fact that the stabilizer matrices are

of size 2N × N, and all manipulations are on this tractably

sized matrix. This averts the exponential cost that manipu-

lating simultaneous eigenvectors would entail. In terms of

classical cost, the synthesis tool is fast because its slowest

step is the Gaussian elimination, which has time complexity

of O(N3) [89].

The actual circuit produced by the synthesis procedure

requires only O(N2) gates in the worst case, as also noted

in related results [87], [88]. This follows because the

Gaussian elimination can require O(N2) elementary row

operations, which entails O(N2) CNOT gates. The erasure

of off-diagonal elements in the Z-matrix also requiresO(N2)

CZ gates.

While the O(N2) gate count for GC measurement is

worse scaling than the O(N) gate count for Naive or QWC

measurement, we emphasize that the measurement circuit is

preceded by an ansatz preparation circuit that dominates gate

counts and depth. In particular, the UCCSD ansatz hasO(N4)

gate count and O(N3) depth after parallelization. Therefore,

the cost of simultaneous measurement is asymptotically

insignificant. As discussed, we base our studies on UCCSD

because the coupled cluster approach is the gold standard

for quantum computational chemistry [22], [31]. Moreover,

UCCSD has shown experimental and theoretical promise,

unlike hardware-driven ansatz, which were shown to suffer

from “barren plateaus” in the optimization landscape [22],

[32]. Even in the case of other nonhardware-driven ansatzes,

gate counts and depths generally scale at least as N3 in order

to achieve high accuracy. Thus, the quadratic cost of GC

measurement appears to be benign.

We also underscore that the O(N2) gate count scaling

of simultaneous measurement is a worst case scenario,

where our partition is dominated by GC-but-not-QWC

edges. In practice, this is not the case and we see QWC on

many, if not most indices. For example, in the linear-time

MIN-COMMUTING-PARTITION 8× approximations

presented in Section VI only a constant (4 or 8) number of

Pauli string indices have a GC-but-not-QWC relationship

in the simultaneous measurements. The remaining N − 4

or N − 8 Pauli string indices are QWC. Thus, under this

MIN-COMMUTING-PARTITION approximation, the

simultaneous measurement circuit gate count is still O(N)

and the depth is still parallelizable to O(1).

For reference, we show in Fig. 12 the simultaneous

measurement circuit for the 4 GC-but-not-QWC qubits in

the Pauli partition for the Jordan–Wigner transformation.

Specifically, this measurement circuit is used to measure

the green 8-clique in Fig. 6. The other N − 4 qubits are

QWC and require single-qubit gates for measurement—this

is why the simultaneous measurement gate complexity is still

just O(N).
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FIGURE 12. Simultaneous measurement circuit generated by our
software for the green 8-clique in Fig. 6. It transforms the measurements
of XXXX, XXYY, XYXY,YXXY (which is a basis for the Pauli strings in
the green eight-clique) to measurements of ZIII, IZII, IIZI, IIIZ.

F. MEASUREMENT CIRCUIT OPTIMIZATIONS

While the circuit synthesis procedure in Algorithm 3

yields a correct simultaneous measurement circuit, it is not

necessarily the most optimal circuit possible. For instance, in

Fig. 12, the SWAP (implemented as three CNOTs) between

qubits 2 and 3 can be omitted from the circuit and instead

implemented by swapping their subsequent gates, and then

accounting for the SWAP classically after the measurements

are performed. In other words, the SWAPs in our circuit con-

structions can be accomplished by simple classical relabeling

of qubit indices.

We also observe that many gates can be parallelized. For

example, the depth of Fig. 12 can be reduced by parallelizing

the execution of theCZ gates with the execution of the CNOT

gates.

IX. BENCHMARK RESULTS

We tested the performance of our simultaneous measurement

strategies in Section V on multiple molecular benchmarks,

whoseHamiltonians we obtained via OpenFermion [25]. Our

benchmark results encompass both the reduction in number

of partitions relative to Naive, as well as the classical com-

putation runtime required to produce the partitioning.

As mentioned, in Section V, the Bron–Kerbosch based

MIN-CLIQUE-COVER approximation has exponential

worst case runtime and should thus be considered a soft

bound on the optimality of partitions produced by other

graph approximation algorithms. Fig. 13 indicates the

performance of Bron–Kerbosch in terms of number of

commuting partitions (cliques) found using both QWC and

GC edges, in comparison to the Naive VQE implementation

in which each Pauli string is in a singleton partition. The

improvement from Naive to QWC is consistently about

4–5×—a significant reduction especially considering that

QWC measurement is cheap. The improvement from Naive

to GC ranges from 7× to 12× from H2 to CH4 (methane).

This suggests that the state preparation cost reduction factor

from GC partitioning improves for larger molecules.

Figs. 14 and 15 examine partitioning efficacy when we

vary the qubit encodings and the number of active spaces

considered for the H2 molecule. Across the qubit encodings,

performance is roughly consistent with a 3× improvement

from QWC partitions and a 10× improvement from GC par-

titions. We do note one outlier in that the performance is par-

ticularly promising for the Brayvi–Kitaev superfast encoding

FIGURE 13. Number of QWC and GC partitions (which we are attempting
to minimize) generated by Bron–Kerbosch for four representative
molecules. AS# indicates the number of active spaces for the molecular
Hamiltonian.

FIGURE 14. Number of QWC and GC partitions generated by
Bron–Kerbosch for the H2 molecule, under different fermion-to-qubit
encodings.

[30], which achieves a 20× reduction in the number of parti-

tions from Naive to GC. Across the varying active spaces,

we again see evidence that the GC partitioning advantage

scales with Hamiltonian size, ranging from 3× to 12× as

the number of active spaces is increased. This is important

and encouraging, because prior work demonstrated that a

relatively large number of active spaces are needed to achieve

chemical accuracy [90].

Along with the Bron–Kerbosch approximations as a loose

upper bound on the expected partitioning optimality, we also

benchmarked another MIN-CLIQUE-COVER approxima-

tion: the Boppana–Halldórsson algorithm, applied to both

QWC- and GC-edge graphs. In addition, we also bench-

marked with the QWC partitioning heuristic provided by

the OpenFermion electronic structure package. We tested

each of these algorithms on problem sizes ranging from 4

to 5237 terms in the molecular Hamiltonian. These Hamilto-

nians correspond to the H2, LiH, H2O, and CH4 molecules

with varying numbers of active spaces. We recorded both

the number of partitions generated and the runtime for each
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FIGURE 15. Number of QWC and GC partitions generated by
Bron–Kerbosch for the H2 molecule, under different numbers of active
spaces.

FIGURE 16. Number of partitions found for each algorithm–benchmark
pair. Under Naive measurement, the number of partitions would exactly
equal the Hamiltonian size (number of Pauli strings). Thus, these
techniques all achieve a 4–20× reduction in state preparations and
measurements relative to the Naive strategy.

algorithm–benchmark pair. Fig. 16 shows the number of par-

titions generated for Hamiltonians with up to 5237 Pauli

strings. Note that some of the benchmarks were unable to

be run due to prohibitive runtime costs on the order of days

(e.g., Bron–Kerbosch for |H| > 1519 Pauli strings). Fig. 17

shows a zoom-in for molecules with up to 630 Pauli strings;

the y-axis now shows the reduction factor in number of

partitions. The plots generally align with our expectations:

GC leads to much more optimal partitioning than QWC

(recall the arguments in Section V-C, and Bron–Kerbosch

GC achieves the fewest number of partitions generated al-

though Boppana–Halldórsson GC has comparable optimal-

ity. Among the QWC methods, we consistently see 3–4×
reductions in number of partitions over Naive separate mea-

surements, and our Boppana–Halldórsson QWC algorithm

marginally outperforms the OpenFermion heuristic.

Fig. 18 plots the wall clock runtimes for each of the

algorithm–benchmark pairs; Fig. 19 focuses on the 0–

630 Hamiltonian size range. These plots corroborate the

FIGURE 17. Factor of improvement (which we are attempting to
maximize) over Naive for each of the algorithms benchmarked for
Hamiltonian sizes up to 630 terms.

FIGURE 18. Classical computer runtimes for each partitioning algorithm
+ benchmark pair. Bron–Kerbosch has exponential and
Boppana–Halldósson has quadratic runtime scaling. This partitioning
step runs as a compilation procedure before the actual quantum
invocations of VQE.

FIGURE 19. Zoom-in of Fig. 18 for Hamiltonian sizes up to 630 terms.
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FIGURE 20. Deuteron energy estimation under Naive and GC partitions,
as executed on IBM Q20 with a low total shot budget of 100. The
energies are in MeV. Average error is 11% lower with GC simultaneous
measurement than with Naive separate measurements.

exponential worst case scaling of Bron–Kerbosch and sug-

gest quadratic runtime scaling for the Boppana–Halldósson

algorithm. OpenFermion’s function is clearly the fastest of

the algorithms explored, but is also consistently the worst

approximation to the MIN-COMMUTING-PARTITION.

X. EXPERIMENTAL RESULTS

We validated our techniques with a proof of concept demon-

stration by experimentally replicating a recent result [91]:

ground state energy estimation of deuteron, the nucleus of

an uncommon isotope of hydrogen. We performed our ex-

periments via the IBM Q Tokyo 20-qubit quantum computer

[92], which is cloud accessible.

Following [91], deuteron can be modeled with a 2-qubit

Hamiltonian spanning four Pauli strings:1 IZ, ZI, XX , and

YY . Under Naivemeasurement, each Pauli string is measured

in a separate partition. Under GC, we can partition into just

two commuting families: {ZI, IZ} and {XX,YY }. Recall that
the former partition is QWC and can be measured with sim-

ple computational basis measurements. The latter partition

can be measured by the Bell basis measurement circuit in

Fig. 11.

To establish a fair comparison between Naive measure-

ment and simultaneous measurement, we performed experi-

ments in which both settings were allocated an equal budget

in total number of shots (trials) allowed. We first considered

a resource-constrained setting with a budget of 100 total

shots. This corresponds to 25 shots per partition in Naive

measurement and 50 shots per partition in GC simultane-

ous measurement. Fig. 20 plots our results for a simplified

unitary coupled cluster ansatz with a single parameter and

1There is also an II term, but this does not actually require any
measurement—it just adds a constant offset to the Hamiltonian.

FIGURE 21. Deuteron energy estimation under Naive and GC partitions,
as executed on IBM Q20 with a total shot budget of 4000. The energies
are in MeV. Average error is 7% lower with Naive separate
measurements than with GC simultaneous measurements.

just three gates (two single-qubit rotations and one CNOT),

as described in [91].

The results indicate reasonable agreement between

Naive measurement, GC measurement, and the true

(theory) values. The deviation from theory stems both

from statistical variance due to the low shot budget, as well

as systematic noise in the quantum processes. As Fig. 20’s

lower—error—plot indicates, for 13 of the 24 values swept

across the θ range, GC measurement had lower error than

Naive measurement. On average, the GC measurements had

an error of 835 keV—11% less than the average error of

940 keV for Naive measurement.

We also ran another experiment with a much higher total

shot budget of 4000 (i.e., 1000 shots per partition in Naive

and 2000 for GC). In this regime, errors due to systematic

quantum noise should dominate over errors from statisti-

cal variation. We expect GC simultaneous measurement to

exhibit more systematic noise because it requires an extra

CNOT gate as per the Bell measurement circuit in Fig. 11.

Therefore, we expect better results from Naive measurement

than from GC simultaneous measurement. Fig. 21 plots the

experimental results.

For 17 of the 24 values swept across the θ range, Naive

measurement does indeed outperformGC simultaneousmea-

surement in terms of lower error. The respective average

errors are 848 and 914 KeV, indicating a 7% higher accuracy

with Naive measurement.

These results are presented as proof-of-concept that si-

multaneous measurement achieves higher accuracy when the

shot budget is limited. Equivalently, we can achieve equal

accuracy with fewer shots (i.e., fewer state preparations)

when the shot budget is limited. For several reasons, we note

that these experimental results underestimate the potential of

simultaneous measurement, especially as higher quantum
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volume devices emerge. In particular, the following state-

ments hold.

1) The unitary coupled cluster ansatz of [91] is highly

simplified and does not yet exhibit the asymptotic

O(N4) scaling. Our argument that simultaneous mea-

surement is cheap hinges on the comparison between

O(N4) ansatz gate count andO(N2) simultaneous mea-

surement gate count. For this simplified ansatz and

small N, simultaneous measurement essentially dou-

bled the gate count. As lower error devices emergewith

the ability to support the full UCCSD ansatz gate count

and larger qubit count N, simultaneous measurement

circuits will become a negligible cost.

2) For a small Hamiltonian like the one considered here,

the partitioning gain from GC is only 2×. As indicated

in the benchmark results in Section IX, we expect up

to 30× gains for larger Hamiltonians and possibly a

gain factor that continues to linearly increase for larger

molecules, based on extrapolation of the benchmark

results.

3) For current machines, the number of jobs is far more

costly than the number of shots for practical purposes,

since executions are scheduled at the granularity of

jobs. In our executions, we saw this as an immediate

and practical advantage of simultaneous measurement.

Our total latency was dominated by the number of jobs

rather than the number of shots, so our simultaneous

measurement results were collectedmuchmore rapidly

than Naive measurement results, even though both set-

tings had equal total shot budgets.

We reiterate that these results should only be interpreted as

a proof of concept. As machines improve, we expect to see

dramatically better results, for the aforementioned reasons.

XI. STATISTICS OF SIMULTANEOUS MEASUREMENT:

GUARDING AGAINST COVARIANCES

We have now shown both how to approximate a MIN-

COMMUTING-PARTITION and how to actually construct

the requisite simultaneous measurement circuits. Finally, we

now address an important question regarding the statistics of

simultaneous measurement. This question was first raised by

McClean et al. [42, Sec. IV B2], which proved that simul-

taneous measurement can actually underperform separate

measurements due to the presence of covariance terms. In

particular, while simultaneousmeasurement does not bias the

estimate 〈̂H〉, it can increase the variance of the estimator,

relative to separate measurements.

In this section, we first show a specific example from [42]

in which simultaneous measurement is suboptimal. Then,

we prove that such examples are atypical and that the MIN-

COMMUTING-PARTITION is still optimal when we have

no prior on the ansatz state. Finally, we demonstrate an

adaptive strategy for detecting and correcting course in the

atypical case when a simultaneous measurement should be

split into separate measurements.

FIGURE 22. Commuting-family partitions of H = IZ + ZI − XX − YY + ZZ
with k = 2 and k = 3.

A. EXAMPLE

Consider the Hamiltonian, H = IZ + ZI − XX − YY + ZZ,

following the example of [42]. The commutation graph has

a bowtie shape. Fig. 22 depicts two possible clique parti-

tionings with k = 2 and k = 3 commuting-family partitions,

respectively.

Thus far, we have worked under the assumption that es-

timating 〈H〉 is more efficient with simultaneous measure-

ment than with separate measurements and we have there-

fore targeted MIN-COMMUTING-PARTITIONs. However,

consider a case in which the ansatz state is |01〉, for the

previously stated Hamiltonian.

Since the outcomes of our measurements are random, we

quantify the uncertainty around our estimate of the expec-

tation value by Var(〈H〉). Our end goal is to determine the

expected value of the Hamiltonian to a target accuracy level

ǫ. The expected number of state preparations, nexpect, needed

to achieve this accuracy for a k-way partitioning is [42]

nexpect =
k
∑k

i=1Var(Partition i)

ǫ2
. (2)

The variance from each partition can be computed from

the formula for the variance of a sum of terms

Var

({
n∑

i=1

Mi

})
=

n∑

i=1

Var(Mi) + 2
∑

1≤i< j≤n
Cov(Mi,M j )

where Cov(M1,M2) = 〈M1M2〉 − 〈M1〉 〈M2〉 and Var(M) =
Cov(M,M).

In our case with |ψ〉 = |01〉, the primitives evaluate

to: Var(IZ) = Var(ZI) = Var(ZZ) = 0 and Var(−XX ) =
Var(−YY ) = 1. All covariances are 0 except for

Cov(−XX,−YY ) = 1.

For the k = 2 partitioning, we have

nexpect =
2 [Var({−XX,−YY,ZZ}) + Var({ZI, IZ})]

ǫ2

= 2 [Var(−XX ) + Var(−YY ) + Var(ZZ)

+ 2Cov(−XX,−YY ) + 2Cov(−XX,ZZ)

+ 2Cov(−YY,ZZ)

+ Var(ZI) + Var(IZ) + 2Cov(IZ,ZI)] /ǫ2

= 8/ǫ2 .
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For the k = 3 partitioning, we have

nexpect

=
3 [Var({−XX}) + Var({−YY,ZZ}) + Var({IZ,ZI})]

ǫ2

= 3 [Var(−XX ) + Var(−YY ) + Var(ZZ)

+ 2Cov(−YY,ZZ) + Var(ZI) + Var(IZ)

+2Cov(IZ,ZI)] /ǫ2

= 6/ǫ2 .

Thus, due to the contribution of positive covariance be-

tween −XX and −YY , the k = 3 partitioning is better than

the k = 2 partitioning for this (H, |ψ〉) combination.

This phenomenon motivates us to pay close attention to

covariances within each partitioning. The worst case sce-

nario is that we end up with positive covariances within each

partition. In a best case scenario, we will have negative co-

variances within each partitioning, which could dramatically

reduce the number of state preparations needed to achieve

some desired error on 〈H〉.

B. TYPICAL CASE

We now observe that examples such as the previous one, in

which the MIN-COMMUTING-PARTITION is suboptimal,

are atypical. Below, we prove that when we have no prior

on the ansatz state |ψ〉, the expected covariance between two
commuting Pauli strings is 0. This validates the general goal

of finding the MIN-COMMUTING-PARTITION, because

under 0 covariances, the only strategy for reducing nexpect in

(2) is to minimize the total number of partitions k.

Theorem 3: Given M1 and M2, two commuting but non-

identical Pauli strings, E[Cov(M1,M2)] = 0, where the ex-

pectation is taken over a uniform distribution over all possi-

ble state vectors (the Haar distribution [93], [94]).

Proof: We consider the following two exhaustive cases.

1) Either M1 or M2 is I. WLOG, suppose M1 = I. Then,

Cov(M1,M2) = 〈I ·M2〉 − 〈I〉 〈M2〉 = 0.

2) Neither M1 nor M2 is I. Since M1 and M2 are

Pauli strings that have only +1 and −1 eigenvalues,

the eigenspace can be split into M1,M2 = (−1,−1),

(−1,+1), (+1,−1), and (+1,+1) subspaces. More-

over, these subspaces are equally sized (proof fol-

lows from stabilizer formalism [11, Ch. 10.5.1]). Let

us write |ψ〉 as a sum over projections into these

subspaces

|ψ〉 = a |ψ−1,−1〉 + b |ψ−1,+1〉 + c |ψ+1,−1〉

+ d |ψ+1,+1〉

Under this state, the covariance is Cov(M1,M2)|ψ〉 =
〈M1M2〉 − 〈M1〉 〈M2〉 = (|a|2 − |b|2 − |c|2 + |d|2) −
(−|a|2 − |b|2+ |c|2+ |d|2)(−|a|2+ |b|2− |c|2+ |d|2).

Now, consider the matching state

|ψ ′〉 = b |ψ−1,−1〉 + a |ψ−1,+1〉 + d |ψ+1,−1〉

+ c |ψ+1,+1〉 .

Under |ψ ′〉, the covariance is Cov(M1,M2)|ψ ′〉 =
〈M1M2〉 − 〈M1〉 〈M2〉 = (|b|2 − |a|2 − |d|2 + |c|2) −
(−|b|2 − |a|2+ |d|2+ |c|2)(−|b|2+ |a|2− |d|2+|c|2).
Thus, Cov(M1,M2)|ψ〉 = −Cov(M1,M2)|ψ ′〉. Since

each |ψ〉 is matched by this symmetric |ψ ′〉 state,

and our expectation is over a uniform distribu-

tion of all possible state vectors, we conclude that

E[Cov(M1,M2)] = 0. �

C. MITIGATING COVARIANCES: PARTITION SPLITTING

While we have now secured the top level goal of initially

performing measurements under the MIN-COMMUTING-

PARTITION approximation, it is still important to detect and

correct course if covariances do turn out to harm our mea-

surement statistics. We now introduce such a strategy that

adaptively splits partitions to mitigate harmful covariances.

Our strategy is based on building sample covariance

matrices of commuting Pauli strings. If M1, M2, and

M3 are Pauli strings, recall that the covariance matrix,

Cov([M1,M2,M3]), under a fixed state is expressed as

follows:

⎛
⎜⎝

Var(M1) Cov(M1,M2) Cov(M1,M3)

Cov(M2,M1) Var(M2) Cov(M2,M3)

Cov(M3,M1) Cov(M3,M2) Var(M3)

⎞
⎟⎠ .

Or, in shorthand notation, where Var(M1) = σ 2
M1

and

Cov(M1,M2) = σM1M2

⎛
⎜⎝

σ 2
M1

σM1M2
σM1M3

σM2M1
σ 2
M2

σM2M3

σM3M1
σM3M2

σ 2
M3

⎞
⎟⎠ .

Note that for commuting matrices M1 and M2, we

have Cov(M1,M2) = 〈M1M2〉 − 〈M1〉 〈M2〉 = 〈M2M1〉 −
〈M2〉 〈M1〉 = Cov(M2,M1), so covariance matrices are

symmetric around the main diagonal.

We now return to the pathological example from Sec-

tion XI-A. Since the variance of a partitioning is the sum of

all entries in each partition’s covariance matrix, the sum of

the shaded terms below represents the variance of the k = 2

partitioning ({−XX,−YY,ZZ}, {ZI, IZ})
⎛
⎜⎜⎜⎜⎜⎜⎝

σ 2
−XX σ−XX,−YY σ−XX,ZZ σ−XX,ZI σ−XX,IZ

σ−YY,−XX σ 2
−YY σ−YY,ZZ σ−YY,ZI σ−YY,IZ

σZZ,−XX σZZ,−YY σ 2
ZZ σZZ,ZI σZZ,IZ

σZI,−XX σZI,−YY σZI,ZZ σ 2
ZI σZI,IZ

σIZ,−XX σIZ,−YY σIZ,ZZ σIZ,ZI σ 2
IZ

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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The sum of the shaded terms below represents the variance

of the k = 3 partitioning ({−XX}, {−YY,ZZ}, {ZI, IZ})
⎛
⎜⎜⎜⎜⎜⎜⎝

σ 2
−XX σ−XX,−YY σ−XX,ZZ σ−XX,ZI σ−XX,IZ

σ−YY,−XX σ 2
−YY σ−YY,ZZ σ−YY,ZI σ−YY,IZ

σZZ,−XX σZZ,−YY σ 2
ZZ σZZ,ZI σZZ,IZ

σZI,−XX σZI,−YY σZI,ZZ σ 2
ZI σZI,IZ

σIZ,−XX σIZ,−YY σIZ,ZZ σIZ,ZI σ 2
IZ

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Therefore, it is favorable (fewer state preparations needed

to achieve a target accuracy) to break the−XX term out of the

{−XX,−YY,ZZ} partition if the condition atop the next page
holds. The matrices represent a sum over enclosed terms, and

the multiplicative factors of k = 2 and k = 3 follow from (2)

2

⎛
⎜⎜⎜⎜⎜⎜⎝

σ 2
−XX σ−XX,−YY σ−XX,ZZ

σ−YY,−XX σ 2
−YY σ−YY,ZZ

σZZ,−XX σZZ,−YY σ 2
ZZ

σ 2
ZI σZI,IZ

σIZ,ZI σ 2
IZ

⎞
⎟⎟⎟⎟⎟⎟⎠

> 3

⎛
⎜⎜⎜⎜⎜⎜⎝

σ 2
−XX

σ 2
−YY σ−YY,ZZ

σZZ,−YY σ 2
ZZ

σ 2
ZI σZI,IZ

σIZ,ZI σ 2
IZ

⎞
⎟⎟⎟⎟⎟⎟⎠

or equivalently, if
⎛
⎜⎜⎜⎜⎜⎜⎝

2σ−XX,−YY 2σ−XX,ZZ

2σ−YY,−XX
2σZZ,−XX

⎞
⎟⎟⎟⎟⎟⎟⎠

>

⎛
⎜⎜⎜⎜⎜⎜⎝

σ 2
−XX

σ 2
−YY σ−YY,ZZ

σZZ,−YY σ 2
ZZ

σ 2
ZI σZI,IZ

σIZ,ZI σ 2
IZ

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3)

Informally, notice that the left-hand side of (3) is amultiple

of the sum of the covariances that exist in the expression

for Var(k = 2) but not Var(k = 3) (which we will call the

“broken terms”), whereas the right-hand side is a multiple of

the sum of the variances and covariances that exist in both

the Var(k = 2) and Var(k = 3) expressions (the “unbroken

terms”). This pattern generalizes such that it is favorable

to switch from a partitioning with k partitions to a clique-

splitting partitioning with k′ > k partitions if

k ×
(∑

broken terms
)
> (k′ − k) ×

(∑
unbroken terms

)
.

A similar strategy was described in [43, Sec. V.A.], for

the special case of comparing Naive partitions (with no co-

variances) with QWC partitions; this article generalizes to

the case of comparing two non-Naive partitions where both

sides have covariance terms.

D. STRATEGIES FOR COVARIANCE ESTIMATION

As demonstrated in Section XI-A, the expected number of

state preparations needed to determine 〈H〉 to an accuracy

level ǫ can be calculated if the variances and pairwise co-

variances of commuting Pauli terms under an ansatz state are

known.

In practice, the true theoretical values of these variances

cannot be known beforehand, as doing so would require

computations involving the exponentially sized ansatz state

vector. However, just as we use repeated measurements from

partitions of commuting terms to approximate the expected

value of their sum, we can use these same measurements

to approximate the covariance matrices of Pauli strings in

the same partition. This estimation of covariance is termed

“sample covariance,” since its value is calculated via a sam-

ple from the theoretical distribution. This key idea of adap-

tively building a sample covariance matrix, using the mea-

surements we are already making, allows us to adaptively

detect and correct for harmful covariance terms.

Note that the theoretical variance of 〈M〉 is Var(M) =
〈M2〉 − 〈M〉2, and is approximated by the sample vari-

ance, V̂ar(M) = 1
n−1

∑n
i=1(mi − m), where {m1, . . . ,mn}

represent the n observed measurements of M, and where

m = 1
n

∑n
i=1mi is the sample mean. Similarly, the theo-

retical covariance Cov(M1,M2) = 〈M1M2〉 − 〈M1〉 〈M2〉 is

approximated by the sample covariance Ĉov(M1,M2) =
1

n−1

∑n
i=1(m1i − m1)(m2i − m2) where {m11, . . . ,m1n} and

{m21, . . . ,m2n} are the n observed measurements of M1 and

M2, respectively.

Since covariance terms can only be approximated if

terms are simultaneously measured, we ideally want to start

our measurements in a setting with MIN-COMMUTING-

PARTITIONS. Fortunately, this is exactly the optimal start-

ing strategy that we initialize with, as per the argument in

Section XI-B. Once we collect sufficiently many observa-

tions that the sample covariance matrices stabilize, this will

enable us to identify opportunities to split partitions in order

to lower variances and thus reduce the number of requisite

state preparations.

To make this concrete, let us again consider

the k = 2 partitionings from the previous example,

{−XX,−YY,ZZ}, {ZI, IZ}. As we accumulate more

observations, we can empirically build up an approximation

of each partition’s sample covariance matrices, so
⎛
⎜⎜⎜⎜⎜⎜⎝

σ̂ 2
−XX σ̂−XX,−YY σ̂−XX,ZZ

σ̂−YY,−XX σ̂ 2
−YY σ̂−YY,ZZ

σ̂ZZ,−XX σ̂ZZ,−YY σ̂ 2
ZZ

σ̂ 2
ZI σ̂ZI,IZ

σ̂IZ,ZI σ̂ 2
IZ

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Since the sample covariance matrix V̂ar(k = 2) contains a

superset of the terms needed to calculate V̂ar(k = 3), we can
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FIGURE 23. Convergence of the empirical difference,

V̂ar(k = 2) − V̂ar(k = 3), to the true difference in variances under |01〉.
Since Var(k = 2) − Var(k = 3) is positive, this signals that the k = 3
partitioning will lead to a lower variance estimator.

FIGURE 24. Empirical difference in V̂ar(k = 2) − V̂ar(k = 3) across ten
Haar-randomly-chosen states. While the convergence value differs
across states, it is negative in all ten cases. This contrasts with the
atypical case of convergence to a positive value in the example of Fig. 23
under state |01〉.

use observations from the k = 2 setting to explore whether

further partitions would be beneficial.

Each of the gray lines in Fig. 23 depicts the value of

V̂ar(k = 2) − V̂ar(k = 3) as it evolves with a set of 100

observed measurements under the |01〉 state. The plot il-

lustrates that the empirical difference, i.e., V̂ar(k = 2) −
V̂ar(k = 3), converges to the true theoretical difference,

i.e., Var(k = 2) − Var(k = 3) = 2 after around 30 obser-

vations. The positive sign of this difference indicates that

Var(k = 3) < Var(k = 2), and therefore the k = 3 partition-

ing should be favored due to its lower variance.

When we broaden analysis of the k = 2 versus k = 3 set-

ting across many different random states, we observe that the

state |01〉 is indeed atypical and pathological, as suggested in
Section XI-B. Under the vast majority of states, the variance

of the k = 2 setting is lower than the k = 3 setting, as ob-

served by the negative values of V̂ar(k = 2) − V̂ar(k = 3) in

Fig. 24, and therefore the −XX term should not be split into

a separate partition.

This discussion naturally leads to the question of how

many observations are necessary for the sample covariance

matrix to be a good approximation of the true theoretical co-

variance matrix. To answer this question, we need to formal-

ize a notion of the accuracy of a sample covariance matrix.

Several candidate measuresmay be considered, whichwe are

exploring in ongoing work.

1) Enforcing a minimum number of “burn-in” observa-

tions. This acts as a proxy of the sample observations

being sufficiently representative of the true theoretical

distribution.

2) Enforcing that the distance between the sample co-

variance matrix after n− 1 observations and after n

observations be less than a prespecified threshold. This

acts as an alternative proxy of the stability of the ob-

servations on which the sample covariance matrix is

based.

3) Enforcing that a hypothesis test between the sample

variance of the full partitioning and the sample vari-

ance of the split-up partitioning returns a p-value below

a prespecified significance level.

The last candidate measure is the most attractive because

p-values can be compared across different experimental set-

tings. By contrast, appropriate cutoff values for the first two

measures vary with H and |ψ〉. Formalization of the last

measure will require further work to confirm the distribution

of the sample variance and covariance terms.

XII. CONCLUSION

Our techniques and demonstrations show that simultaneous

measurement substantially reduces the cost of VQE by

allowing state preparations to cover several Pauli strings

simultaneously. We demonstrate algorithms that achieve

up to 30× reductions in the number of requisite state

preparations on specific molecules, and an O(N) reduction

asymptotically. This reduces the overall measurement cost of

VQE on molecular Hamiltonians from O(N4) to O(N3). Our

systems emphasis includes explicit attention to the overhead

of the MIN-COMMUTING-PARTITION approximation

runtime, as well as the overhead incurred by simultaneous

measurement circuits. To address the latter, we develop a

circuit synthesis procedure, which we have implemented

and tested in software [77]. We also study the statistics of

simultaneous measurement, and ensure that the top-level

goal of finding MIN-COMMUTING-PARTITIONs is

statistically justified. Our statistical analysis also yields

a strategy for detecting and correcting course when

simultaneous measurements are harmed by covariance

terms. Our theoretical and benchmark/simulation results are

accompanied by a proof-of-concept experimental validation

on the IBM 20Q quantum computer.
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